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Abstract
1.	 Managing forests to sustain their diversity and functioning is a major challenge in 

a changing world. Despite the key role of understory vegetation in driving forest 
biodiversity, regeneration and functioning, few studies address the functional 
dimensions of understory vegetation response to silvicultural management.

2.	 We assessed the influence of the silvicultural regimes on the functional 
diversity and redundancy of European forest understory. We gathered vascular 
plant abundance data from more than 2000 plots in European forests, each 
associated with one out of the five most widespread silvicultural regimes. 
We used generalized linear mixed models to assess the effect of different 
silvicultural regimes on understory functional diversity (Rao's quadratic entropy) 
and functional redundancy, while accounting for climate and soil conditions, 
and explored the reciprocal relationship between three diversity components 
(functional diversity, redundancy and dominance) across silvicultural regimes 
through a ternary diversity diagram.
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1  |  INTRODUC TION

Understory represents the largest component of biodiversity in most 
forest ecosystems (Spicer et al., 2020) and thus plays a key role in 
forest ecosystems' processes and diversity (Gilliam, 2007). Despite 
its importance, the influence of overstory composition, structure 
and management on understory plant diversity is relatively poorly 
understood. This is a particularly relevant issue in European forests, 
whose overstorey composition and structure have been modified 
through various silvicultural systems for centuries or even millennia 
(Aszalós et al., 2022; Meyer & Ammer, 2022; Pretzsch et al., 2008; 
Puettmann et al., 2009). These modifications have often resulted in 
simplified stand structure (Puettmann et  al.,  2009), with negative 
consequences on biological communities, including the understory 
(Landuyt et al., 2024). Examples include traditional, timber-focused 
approaches like clearcutting and coppicing, which notoriously sim-
plify structural and biological complexity (Fabbio, 2016; Puettmann 
et al., 2009), thus potentially reducing forest functioning and resil-
ience (Fahey et al., 2018). Understanding the impact of forest man-
agement on understory vegetation would allow us to control and 
drive its response to disturbance and stresses (Hooper et al., 2005).

Managing forests to sustain both ecosystem functioning and bio-
diversity conservation has raised increasing concern in recent times, 
in light of the climatic changes and biodiversity losses observed 
worldwide (Fahey et al., 2018; Puettmann et al., 2009). Accordingly, 
new silvicultural strategies have emerged in the last few decades, to 
promote complexity in forest ecosystems. These include a greater 
consideration of uneven-aged or multi-layer silvicultural systems 
(Nolet et al., 2018), continuous cover forestry (Mason et al., 2022), 
irregular shelterwood (Raymond & Bédard, 2017), and variable re-
tention forestry (Curzon et al., 2020; Fedrowitz et al., 2014), among 
other practices (for a review, see Trentanovi et  al.,  2023). As the 
portfolio of forest management options increases, so does the need 

of understanding the influence of these options on forest ecosystem 
processes and dynamics.

While it is expected that overstory-understory relationships 
are driven by overstory structure (Segar et  al.,  2022; Zellweger 
et  al.,  2020), yet the understory response to active management 
practices depends on a combination of associated environmental 
changes, pre-harvesting community composition and understorey 
functional traits (Ares et al., 2010; Bartemucci et al., 2006; Wilson 
et al., 2009). For instance, harvesting typically induces an increase in 
light transmittance, accompanied by an increase in water and min-
eral nutrients at the forest floor, which may lead to either an increase 
in understory species richness by reducing environmental filtering 
(Sabatini et al., 2014), or to a decrease in such richness due to higher 
competition (Grace et  al.,  2014) or selective selection (Mouillot 
et al., 2013), with cascading effects on forest succession and ecosys-
tem processes (Gilliam, 2007; Spicer et al., 2020), also depending on 
the original community composition (Burton et al., 2013) and func-
tional structure (De Lombaerde et al., 2021; Landuyt et al., 2019). 
Over the last few years, there has been increasing interest in evalu-
ating the effect of forest management on functional diversity (Ford 
& Keeton, 2017; Monge-González et al., 2021; Stanturf et al., 2014), 
rather than on species diversity only. Forest management can lead 
to variations in plant communities' functional structure, affecting 
either their functional response to a disturbance, their functional ef-
fect on ecosystem processes, or both (Ares et al., 2010). Among the 
metrics of functional structure, the most often used to evaluate the 
community responses to natural or anthropogenic disturbance and 
alteration (Aquilué et  al.,  2020) are: functional diversity, which ac-
counts for the range of functional traits, and functional redundancy, 
which accounts for the recurrence of functional traits. Functional 
diversity encompasses the diversity of ecological strategies present 
in a community, whereas functional redundancy reveals how these 
strategies are redundant, thus the potential impacts of species losses 

3.	 Intensive silvicultural regimes are associated with a decrease in functional 
diversity and an increase in functional redundancy, compared with unmanaged 
conditions. This means that although intensive management may buffer 
communities' functions against species or functional losses, it also limits the 
range of understory response to environmental changes.

4.	 Policy implications. Different silvicultural regimes influence different facets of 
understory functional features. While unmanaged forests can be used as a ref-
erence to design silvicultural practices in compliance with biodiversity conserva-
tion targets, different silvicultural options should be balanced at landscape scale 
to sustain the multiple forest functions that human societies are increasingly 
demanding.

K E Y W O R D S
ecosystem resilience, forest understory, functional diversity, functional redundancy, 
silvicultural regime, sustainable forest management, unmanaged forests

[Correction added on 17 September 2024, 
after first online publication: Funding 
statement has been updated.]

[Correction added on 9 December 2024, 
after first online publication: Author name 
Jan Helbach has been corrected.]
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on ecosystem functioning (Monge-González et al., 2021). The avail-
ability of many functionally distinct species, that is, high values of 
functional diversity, increases the probability that, in case of major 
perturbation, climatic instability or fluctuating disturbance regimes, 
some of them may exploit the new conditions, thus contributing to 
the ecosystem post-disturbance reorganization (Schmitt et al., 2020; 
Seidl & Turner, 2022). Accordingly, high functional diversity in un-
derstory species corresponds to a strong potential for forest tree 
regeneration, post-harvest productivity (Wei et al., 2021), and tree 
survival (Billing et al., 2022). The co-occurrence of species that per-
form similar functions, that is, high values of functional redundancy, 
ensures the maintenance of immediate ecosystem processes, such 
as productivity, carbon sequestration or nutrient cycling, and may 
support forest resilience after strong disturbance or perturbations 
(Pillar et al., 2013; Ricotta et al., 2016). Both functional diversity and 
redundancy have been recognized as proxies of ecological resilience 
(sensu Holling,  1973) through site-level studies performed in arid 
and mountain rangelands (Chillo et al., 2011; Sadeghinia et al., 2023) 
and in forests subjected to wildfires (Spasojevic et al., 2015) as well 
as through reviews and meta-analyses (Biggs et al., 2020; Standish 
et al., 2014).

The possibility for a community to display both a high functional 
diversity and a high functional redundancy is limited by the over-
all species diversity of the community (Ricotta et al., 2023), which 
defines the potential number of species with recurrence traits for 
a wide range of functional traits' values. The joint analysis of the 
different components of diversity can be related to the ecological 
processes that contribute to shaping community organization to 
varying degrees under different environmental conditions (Ricotta 
et al., 2023). In forest ecosystems, a combined approach was indeed 
used to identify the pathways through which management shapes 
the functional structure of understorey (Bricca et al., 2020; Monge-
González et al., 2021).

While the impact of management on understory functional diver-
sity was the focus of some previous studies (Vanneste et al., 2019; 
Xie et al., 2023), few works have explored the influence of manage-
ment on different components of understory functional structure 
(e.g. Aquilué et al., 2020; Monge-González et al., 2021). In addition, 
few studies have considered comparing the functional response to 
different available management alternatives (Cadotte,  2011), even 
though such understanding can be pivotal to evaluating current 
management approaches and shaping future forestry.

In this study, we tested whether the silvicultural regime influ-
ences the mutual relationship between the three diversity compo-
nents (functional diversity, redundancy and species dominance) of 
understory in European forests. We hypothesized that different 
management regimes influence understory functional structure dif-
ferently, with more intensive management regimes likely increasing 
redundancy, while limiting functional diversity of understory com-
munities, due to the simplification of both stand structure and en-
vironmental conditions at the forest floor (Kusumoto et  al.,  2015; 
Laliberte et  al.,  2010). Conversely, silvicultural regimes pursuing 
structural heterogeneity are expected to host more functionally 

diverse understory communities (Kusumoto et  al.,  2015). We also 
expected to find that less intensive silvicultural regimes ensure high 
values of both functional diversity and redundancy, being more 
similar to ‘unmanaged’ conditions, where higher species diversity is 
expected (Paillet et al., 2010). By considering the most widespread 
management regimes in Europe, we provide nuance to the under-
standing of the ecological implications of forest management and 
inform sustainable forest management practices in Europe.

2  |  MATERIAL S AND METHODS

2.1  |  Vegetation and silvicultural data

We used data from forest biodiversity studies conducted across 
Europe from 2000 to 2021, which were gathered in the framework 
of the COST Action BOTTOMS-UP (Burrascano et  al.,  2023). The 
data collection was conducted with the necessary authorizations 
from the competent authorities. We considered a subset of data 
having vascular plant abundance records, for a total of 2107 sam-
pling units across 11 European countries (Figure  1). The sampling 
units consist of plots (i.e. delimited forest areas where sampling was 
performed) nested into 489 stands (i.e. management spatial units), 
which in turn are nested into 146 sites (i.e. environmentally homo-
geneous geographical areas). The distance between samples in a site 
ranges between 37 and 6180 meters, whereas the average distance 
is 330 ± 9 m.

Vascular plant data has been collected within fixed circular or 
square sampling units, mostly ranging from 75 to 1256 m2 (for de-
tails, see Burrascano et  al.,  2021), considering understory vegeta-
tion, the individuals observed below 3–5 m of height. We purposely 
included woody species in the understory since they have a key 
role in determining the understory functional structure, especially 
in relation to its regeneration potential and to the ecological resil-
ience of forest ecosystems. Species cover values were assigned in a 
percentage scale (0–100), which in some cases derived from cover-
abundance scales (e.g. Braun-Blanquet, Van der Maarel, Raunkiær). 
Species nomenclature was checked using the gnr_resolve() function 
of the ‘taxize’ package (Chamberlain et al., 2020) in R version 4.1.1 (R 
Core Team, 2021). The function assigns a score, which is a measure 
of confidence or reliability associated with the taxonomic identifica-
tion of a given species name. Species names obtaining scores greater 
than 0.90, that is, high confidence, were accepted. Further screening 
was performed through the ‘WorldFlora’ R package (Kindt, 2020).

Silvicultural regimes (Table 1) and forest categories (sensu Forest 
Europe, see also Barbati et al., 2014) (Table S1) were associated with 
each sampling unit (Burrascano et al., 2021; Figure S1). Silvicultural 
regimes were classified according to a gradient of harvesting inten-
sity (Table 1) sensu Haeussler et al. (2002).

The resulting data can be considered representative of the most 
widespread management conditions in European forests and of the 
different stand development phases, considering the time from the 
last intervention in the sampling units (Figure S2).
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2.2  |  Assessing understory functional diversity and 
redundancy

We focused on three widely available traits that give insights into 
both the global spectrum of plant functions (Díaz et  al.,  2016; 
Vanneste et al., 2019) and the leaf-height-seed functional trait space 
(Westoby, 1998). Specific leaf area (SLA) reflects the trade-off be-
tween leaf longevity and photosynthetic rate (Wright et al., 2005), 
and thus controls the growth rate in response to varying levels of 
disturbance (Bernhardt-Römermann et  al.,  2011); plant height (H) 
determines species ability to compete for light and responds to vari-
ous environmental stresses (Westoby, 1998); seed mass (SM) plays 
an important role in the colonization process by influencing dispersal 
distances, seed persistence, germination, establishment and survival 
(Burton et al., 2020; Moles et al., 2005). These attributes are linked to 
two major axes of the global spectrum: H and SM are related to size, 
while SLA is related to the leaf economic spectrum (Díaz et al., 2016).

Trait values were collected from available literature and data-
base (Cerabolini et al., 2010; Chelli, Ottaviani, et al., 2021; Kattge 
et  al.,  2020; Kleyer et  al.,  2008). Depending on the trait, we 

gathered trait values for 83%–94% of the species. Missing values 
were imputed using the ‘mice’ R package (Van Buuren & Groothuis-
Oudshoorn, 2011). Most imputed values were relative to rare and/or 
less abundant species (Wasof et al., 2018), covering less than 10% of 
the sampling unit area in 97% of cases.

We calculated functional diversity for each sampling unit with 
the Rao quadratic entropy Q (Botta-Dukát, 2005):

where dij is the dissimilarity between species i and j (i, j = 1, 2, … , S) 
with 0 ≤ dij ≤ 1, dij = dji, and dii = 0, weighted for the corresponding 
species relative abundances pi × pj. This index estimates the mean dis-
similarity between two randomly selected individuals within the func-
tional trait space. Therefore, by assessing the amount of multivariate 
trait dispersion between the species of a given assemblage (Gregorius 
& Kosman, 2017; Ricotta et al., 2021), the Rao quadratic diversity is 
directly related to the statistical notion of variance (Pavoine,  2012; 
Rao, 2010).

(1)Q =

s
∑

i,j

pipjdij,

F I G U R E  1  Spatial distribution of the study sites. The size of bullet points is proportional to the number of sampling units per site. Grey 
areas are covered by forests with a tree cover greater than 40% according to the map of Kempeneers et al. (2011).
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Functional redundancy was then calculated according to Ricotta 
et al. (2023) as

where S is the classical abundance-based Simpson diversity index: 
S = 1 −

∑S

i=1
p2
i
, defined as the probability that two randomly selected 

individuals from a given site belong to different species.
As such, functional redundancy (i.e. the amount of species diver-

sity not expressed by functional diversity; Pillar et al., 2013) provides 
information on the mean functional similarity among the distinct 
species in a given plot. For details, see Ricotta et al. (2023).

From the above, it follows that Rao's quadratic diversity (Q), 
functional redundancy (R) and Simpson dominance (i.e. the comple-
ment of Simpson's diversity D = 1 − S, defined as the probability that 
two randomly selected individuals from a given site belong to the 
same species) sum up to one: Q + R + D = 1 Accordingly, using these 
three functional attributes, it is possible to describe the functional 
structure associated with each silvicultural regime using a ternary 
diagram (Ricotta et al., 2023).

Functional attributes were calculated for the three standard-
ized traits using the ‘adiv’ R package (Pavoine,  2020) as follows. 
The Marczewski–Steinhaus coefficient used in the functions to cal-
culate the dissimilarity dij is the complement of the Jaccard index 

of similarity extended to include data on species abundances (see 
Ricotta et al., 2016 for details). To standardize traits, the function di-
vides all values by the highest observed one. Community-weighted 
mean trait values (CWMs) were also calculated for each trait to char-
acterize the mean understory functional composition, and its rela-
tionship with management, soil and environmental variables.

2.3  |  Soil and climate data

Given the broad scale of the data, we accounted for the main en-
vironmental gradients by considering the soil and climatic features 
of each sampling unit in the analysis. Soil features were obtained 
from the European topsoil physical properties map based on Land 
Use and Cover Area frame Statistical survey (LUCAS) topsoil data 
(Ballabio et al., 2016). We considered

•	 available water capacity (expressed as a fraction of unit ground);
•	 bulk density derived from soil texture datasets (mg/m3);
•	 soil textural classes derived from clay, silt and sand maps.

For each sampling unit, we calculated the mean soil properties 
over a 1000 m buffer from the centre of the sampling unit.

(2)R = S − Q,

TA B L E  1  Silvicultural regimes applied in the sampling units. For details, see the main text.

Silvicultural regimes Treatment description
Silvicultural 
regime Typical vertical structure

No. of 
sampling units 
(%)

Unmanaged No silvicultural interventions applied in 
the recent past (50 years) or planned, 
and no clear visible indications of human 
disturbance

None Uneven-aged stand 150 (7.2%)

Selection cutting Felling and regeneration are not 
restricted to certain parts of the forest, 
but uniformly distributed. Both single-
tree and group selection cutting are 
considered

Low Uneven-aged stand 641 (30.4%)

Shelterwood Overstorey trees in a forest stand are 
completely removed using a limited 
number of progressive cuts designed to 
promote regeneration making use of the 
shelter and seed source of remaining 
trees

Medium Mostly even-aged stand 657 (31.2%)

Clearcutting with retention The forest stand is clear-felled in a single 
harvesting operation except for solitary 
trees or tree groups (living or dead) that 
are deliberately spared

Medium Mostly even-aged stand 384 (18.2%)

Clearcutting The forest stand is entirely harvested in 
a single operation, resulting in a treeless 
open area

High Mostly even-aged stand 180 (8.5%)

Coppice with standards The two vertical tree layers of the forest 
stand are harvested by clearcutting and 
selection cutting, resulting in respectively 
an even-aged coppiced dominated layer, 
and trees of seed origin in the dominant 
layer

High Two-storied stand 95 (4.5%)
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Climatic data were obtained from CHELSA v.2.1 (Karger 
et  al.,  2017), at 1000 m resolution. Bioclimatic variables were de-
rived as long-term means of maximum and mean temperature, and 
mean precipitation sums over the 1981–2010 period. We selected 
four variables as follows:

•	 mean annual temperature,
•	 annual range of air temperature (difference between the maxi-

mum of the warmest month and the minimum of the coldest 
month),

•	 annual precipitation and
•	 precipitation seasonality (standard deviation of the monthly 

precipitation).

The topographic influence on incident solar radiation was calcu-
lated as the heat load index (McCune & Keon, 2002) for each sam-
pling unit based on latitude and on slope and aspect derived from 
Copernicus' European Digital Elevation Model (EU-DEM; https://​
www.​eea.​europa.​eu/​data-​and-​maps/​data/​coper​nicus​-​land-​monit​
oring​-​servi​ce-​eu-​dem).

2.4  |  Statistical analyses

We fitted generalized linear mixed models (GLMMs) using the ‘lme4’ 
R package (Bates et al., 2015) to assess the role of management in 
driving understory functional diversity and redundancy, with ‘un-
managed’ forests' sampling units as a reference. After evaluating 
the distribution of functional diversity and redundancy using the 
‘fitdistrplus’ package (Delignette-Muller & Dutang, 2015), we opted 
for a Gaussian distribution. We included climate and soil variables in 
the fixed part of the model and standardized all the fixed continu-
ous variables. We considered forest category (sensu Forest Europe; 
Barbati et al., 2014; EEA, 2006), site (i.e. environmentally homogene-
ous geographical areas, Burrascano et al., 2023), stand (i.e. uniformly 
managed spatial units) and sampling unit size as random intercept 
variables. Forest categories were meant to include broad-scale vari-
ability in species pools, which may affect functional diversity and 
redundancy. Site effect includes the variability across data sets, in 
terms of local conditions and sampling protocols. Considering the 
site/stand controls for nested data structure and explaining the 
spatial variability within the data, avoiding pseudo-replication is-
sues due to the uneven distribution of the sampling units across 
Europe (Zuur et al., 2013). Finally, sampling unit size controls for the 
sampling effort. To deal with multicollinearity issues, we calculated 
the variance inflation factor (VIF) of each predictor using the ‘car’ R 
package (Fox & Wisberg, 2019), and we checked that VIF <4 (Zuur 
et al., 2013) which indicated no high correlation among predictors. 
We also verified the normality of residuals through visual inspec-
tion of Q–Q plots and computed conditional and marginal pseudo-R2 
(Nakagawa & Schielzeth, 2013) with the ‘piecewiseSEM’ R package 
(Lefcheck,  2016). The same analysis was also performed for each 
trait separately, using their CWM values.

A multiple comparison post hoc test was also performed using 
Tukey contrasts, with the aim of comparing functional diversity and 
redundancy across pairs of silvicultural regimes.

Finally, a ternary diagram (sensu Ricotta et al., 2023) was used to 
visualize the relationship between functional diversity, redundancy 
and (Simpson) dominance across silvicultural regimes. In the ternary 
diagram, the vertices of the triangle correspond to the three compo-
nents of diversity, and each point corresponds to the median values 
of the three diversity attributes for each silvicultural regime.

3  |  RESULTS

3.1  |  Silviculture shapes understory functional 
diversity and redundancy

The GLMMs resulted in a similar total (conditional R2) and fixed ef-
fects explanatory power (marginal R2) for functional diversity (con-
ditional R2 = 0.56; marginal R2 = 0.06) and functional redundancy 
(conditional R2 = 0.59; marginal R2 = 0.08). Functional diversity was 
diversely affected by different silvicultural regimes according to 
their harvesting intensity (Figure  2): high harvesting intensity re-
gimes have mean lower functional diversity, where the difference is 
significant for simple clearcutting and coppice with standards, while 
selection (low harvesting intensity), and shelterwood (medium har-
vesting intensity) did not differ from unmanaged conditions. Soil pa-
rameters did not result in significant effects on functional diversity, 
while temperature factors positively affected it.

The model for functional redundancy gave opposite results, with 
a significant increase for high harvesting intensity silvicultural re-
gimes (simple and retention clearcutting), negative relationships with 
mean temperature compared to unmanaged conditions (Figure 2).

When considering the three traits individually, the mean func-
tional traits (quantified by the CWM values) responded differently 
to management, soil and climate conditions (Figure  3). Compared 
to unmanaged conditions, SLA was negatively impacted by all man-
agement conditions, except more high harvesting intensity silvicul-
tural regimes (simple clearcutting and coppice with standards). SLA 
was also influenced by climate and partly by soil and climate since it 
was significantly correlated with temperature, heat load and avail-
able water content. Simple clearcutting has a negative effect on 
the CWM of plant vegetative height, while it has a non-significant 
effect for low to medium harvesting intensity silvicultural regimes. 
Plant vegetative height was also positively influenced by tempera-
ture, while SM was positively associated with bulk density and heat 
load, and negatively associated with temperature range. Marginal 
and conditional R2 for the CWM models are, respectively, 0.22 and 
0.83 for SLA, 0.04 and 0.76 for plant vegetative height and 0.03 and 
0.70 for SM. The random effects included category, site, stand and 
sampling area.

Multi-comparison (Tukey's test) confirmed that functional di-
versity and redundancy significantly differed across silvicultural re-
gimes, with intense regimes showing significant differences (lower 
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functional diversity, higher functional redundancy) compared to less 
intensive ones (Figure 4).

3.2  |  Relationship between diversity components

The pattern of diversity decomposition into functional diversity, re-
dundancy and species dominance differed across silvicultural regimes 

(Figure  5). In terms of functional diversity, the highest values were 
found for unmanaged forests and low to intermediate harvesting in-
tensity silvicultural regimes, namely selection cutting, shelterwood 
and clearcutting with retention. Among these regimes, unmanaged 
forests were those displaying the best combination of high functional 
diversity and low dominance. Compared to these regimes, simple 
clearcutting is characterized by the highest values of redundancy 
but low values of functional diversity, while coppice with standards 

F I G U R E  2  Influence of silvicultural regimes (compared to unmanaged forests) and topographic, soil and climate variables on functional 
diversity and redundancy. Silvicultural regimes (Table 1) are listed according to a top-to-bottom gradient of increasing harvesting intensity. 
*p ≤ 0.05, ***p ≤ 0.001. The x-axis reports the model coefficients. The vertical dashed line indicates unmanaged forest conditions slope 
(reference). Dots indicate the slope coefficients for each predictor, and the horizontal lines their confidence interval. Positive coefficients are 
coloured in navy, whereas negative coefficients are coloured in red. Non-significant dots were plotted using transparency.

F I G U R E  3  Effect of silvicultural regimes, soil and climate conditions on functional signature (CWM of individual traits). CWM values 
were rescaled between 0 and 1 to account for differences in units and range in the selected traits. *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001. The 
vertical dashed line indicates unmanaged forest conditions slope (reference). Dots indicate the slope coefficients for each predictor, and the 
horizontal lines their confidence interval. Positive coefficients are coloured in navy, whereas negative coefficients are coloured in red. Non-
significant dots were plotted using transparency. When non-significant, the dots have been plotted using transparency (for definitions, see 
Section 2.3). CWM, community-weighted mean.
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have low values of functional diversity and the highest degree of 
dominance.

4  |  DISCUSSION

4.1  |  Silviculture shapes understory functional 
diversity and redundancy

We demonstrated that silviculture has a relevant impact on the 
functional structure of understory vegetation in European forests. 
High harvesting intensity silvicultural regimes, such as coppicing or 
clearcutting, are associated with a decrease in functional diversity 
that may hamper their ability to respond to the ongoing environ-
mental changes, partly counterbalanced by an increase in functional 
redundancy, compared to unmanaged forests. Low harvesting inten-
sity silvicultural regimes, that is, shelterwood and selection cutting, 
maintained understory functional diversity and redundancy at levels 
comparable to unmanaged forests. On the one hand, the periodic 
thinning performed for the shelterwood regime causes a temporary 
opening of the canopy cover, thus enabling seed regeneration (Cutini 
et al., 2015) while promoting understory plant diversity through the 
gradual changes in light intensity, conversely to what happens in 
more intensive silvicultural regimes (Dormann et al., 2020; Helbach 
et al., 2022). On the other hand, selection cutting sustains heteroge-
neous light conditions in the understory (Helbach et al., 2022), which 
maintains a functionally diverse understory community (Burton 
et al., 2014; Donoso et al., 2020; Monge-González et al., 2021) with 

a high recurrence of traits (high redundancy) resulting in highly resil-
ient understory communities (Messier et al., 2019).

Soil conditions did not affect functional diversity and redun-
dancy, thus we confirmed that forest plant diversity is mainly driven 
by stand complexity and, in turn, by light heterogeneity rather than 
by soil attributes (Helbach et al., 2022). However, it should be noted 
that to cope with the broad geographical scope of our study, we 
considered broad-scale soil attributes, which may be less relevant 
than fine-scale soil conditions in explaining plant diversity at the 
plot level (Chelli et  al.,  2024; Gautam et  al.,  2016). It is likely that 
part of the variability due to different soil conditions was included 
in the regional variable ‘site’ that we used as a random effect, as 
suggested by the low marginal R2. Climate influenced understorey 
vegetation functional diversity and redundancy likely by modify-
ing understory microclimate (e.g., soil temperature and humidity) 
(Weigel et al., 2019). Especially, temperature has a positive influence 
on functional diversity, likely due to greater seasonal differences 
that occur in the areas with higher annual temperature and pro-
mote the co-occurrence of functionally different species (Gallagher 
et al., 2013; Vanneste et al., 2019).

4.2  |  Silvicultural regime influences mean 
community traits

The effects of different silvicultural regimes on CWM traits related 
to resource acquisition are mainly determined by light and water 
availability. The general trend of reducing SLA in actively managed 

F I G U R E  4  Multi-comparison (Tukey's test) of functional diversity and redundancy according to silvicultural regimes. Asterisks indicated 
significant differences among treatments. *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001. Values on the left of the vertical dotted line indicate that the left-
hand term of the contrast has a lower mean value than the right-hand term and vice versa for the values on the right of the vertical dotted 
line. For example, simple clearcutting has significantly lower mean functional diversity, and significantly higher mean functional redundancy, 
compared to selection cutting (p < 0.001).
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forests was attributed to canopy opening, which may alter soil mois-
ture conditions (Horváth et al., 2023), and—through reduced water 
availability—may likely influence the plant strategies to cope with 
water stress. Lower SLA is often associated with plants adapted to 
drier conditions, as they tend to have thicker, more durable leaves 
that reduce water loss through transpiration. The outcome is sup-
ported by the observed positive association between higher SLA 
and climate heterogeneity (temperature range and precipitation sea-
sonality). Conversely, coppicing leads to non-significant changes in 
SLA compared with unmanaged forests, which can be the result of 
increasing light availability, which may modify resource acquisition 
strategies (Freschet et  al.,  2013) supporting several fast-growing 
pioneer species with high SLA (Kermavnar et al., 2019).

Environmental conditions drive the exchange in the soil–plant-
atmosphere continuum and plant functional traits are known to 

follow relatively predictable patterns across large environmental 
and species ranges (Alonso-Forn et al., 2020). In this view, it is not 
surprising that SLA is influenced by soil and climate conditions, since 
it is related to root growth suitability and soil permeability (Keller 
et al., 2021), supporting more diversified strategies (Schellenberger 
Costa et al., 2017). Temperature range increased SLA suggesting that 
high variability in this factor widens the range of acquisition strate-
gies to cope with stressors (Kramp et  al.,  2022). Height increases 
with available water content since it can be related to high diver-
sity in the root system, which in turn facilitates the uptake of water 
from different soil depths (Fusaro et  al.,  2015). SM responded to 
environmental variables differently from resource acquisition traits. 
Temperature range was negatively related to SM since drought 
reduces the niche complementarity, which is also affected by soil 
structure (O'Keefe et al., 2019).

F I G U R E  5  Ternary diagram of functional diversity (Q; Equation 1), functional redundancy (Equation 2) and species dominance across 
different silvicultural regimes. The point corresponds to the median value of the diversity attributes, calculated for each silvicultural regime.
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4.3  |  Silvicultural regime influences forest diversity 
composition

In unmanaged forests, the median value of functional diversity 
occurred at relatively high values of functional redundancy, with 
relatively similar results for selection forests, while for similar func-
tional diversity values, both shelterwood and retention clearcut-
ting regimes showed a lower functional redundancy and a higher 
species dominance. Unmanaged forests are often defined by their 
high degree of structural heterogeneity, that is, denser, more 
stratified canopy structure, with higher quantities of standing 
and lying deadwood (Paillet et al., 2015; Wirth et al., 2009). This 
structural complexity creates heterogeneous living conditions for 
plants, for instance in terms of light intensity in temperate for-
ests, which were demonstrated to allow for the coexistence of a 
high number of redundant species across highly different ecologi-
cal strategies (Bartels & Chen,  2010; Helbach et  al.,  2022), that 
is, the niche differentiation diversifies resource-use or require-
ments and decreases competitive exclusion (Blonder, 2018; Kraft 
& Ackerly, 2014). Communities with high functional diversity sup-
ported by redundant species are likely to be resilient to a wide 
spectrum of stressors and disturbances (Messier et al., 2019). By 
contrast, in actively managed forests, even when functional di-
versity values are comparable to those of unmanaged forests, we 
found lower values of functional redundancy and higher values of 
species dominance than in unmanaged forests, meaning that man-
agement may maintain a relatively high functional diversity but 
not in combination with a high functional redundancy and species 
evenness (Figure 4). Silvicultural regimes with higher harvesting in-
tensity, as simple clearcutting, showed lower levels of functional 
diversity balanced by higher functional redundancy. Coppice with 
standards showed a high degree of dominance at the expense of 
the two functional components.

4.4  |  Policy implications

Our results give useful indications on how to maintain the functional 
structure of understory communities in the face of environmental 
changes and potential disturbances (Mina et al., 2022). High harvest-
ing intensity silvicultural regimes decrease functional diversity and 
increase functional redundancy, thereby influencing the relationship 
between these two facets of understory functional structure and jeop-
ardizing forest's ability to retain ecosystem functioning. Given the com-
plexity of such interactions, our results do not point to a ‘universally 
best’ silvicultural regime. Intensive management options have a posi-
tive influence on functional redundancy at the expense of functional 
diversity; therefore, the former may be considered for socio-economic 
targets limitedly to areas where dramatic environmental changes are 
not expected. Low harvesting intensity regimes maintained functional 
diversity and redundancy values comparable to unmanaged conditions, 
simultaneously allowing to exploit wood resources. Our results also 
supported the importance of maintaining, promoting and monitoring 

unmanaged forests to assess their ecological properties and to com-
pare and strengthen active silvicultural practices. Taken together, 
these considerations support the need to effectively plan the spatial 
and temporal patterns of the silvicultural regimes at the landscape level 
to achieve the multiple needs and goods that are demanded by for-
est, as hypothesized in the triad paradigm (Betts et al., 2021; Himes  
et al., 2022).

4.5  |  Limitations and opportunities

We used a simple, yet effective classification of silvicultural regimes, 
to cope with a large-scale, European-wide comparison. However, 
within each silvicultural regime, thinning type, harvesting intensity, 
rotation, and period may vary widely among regions (Trentanovi 
et al., 2023). For instance, the thinning period is crucial for support-
ing vegetation recovery under gradually decreasing canopy density 
depending on the stand features (Aszalós et  al.,  2022). The same 
consideration holds for unmanaged forests, as their ecological fea-
tures depend on their management history, which is usually ex-
tremely complex in European forests (Paillet et al., 2010).

In this study, we were unable to consider the influence of his-
torical disturbance regimes on ‘unmanaged’ forests, even though 
some unmanaged forests considered in this study may have not 
reached the full diversity potential (in terms of stand structure, 
light heterogeneity and microclimate) as in old-growth forests 
(Schall et al., 2021) but give results similar to forests managed at 
low harvesting intensity.

Combining silvicultural regimes with quantitative data on recent 
and historical management (e.g. cutting frequency, biomass harvested, 
gaps dimension, time from the last intervention) and including forests 
in the old-growth phase would contribute to refining the analysis and 
evaluating the mechanistic links between biodiversity and the tempo-
ral lag from the last disturbance or residual canopy structure.
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